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? Constructively defined sets and functions have good properties
e.g., every uncountable Σ1

1 pointset has a non-empty perfect subset

• We have reduced this to showing that

{y ∈ Y : y ∈ ∆1
1[x ]} is Π1

1[x ] , where

y ∈ ∆1
1[x ] ⇐⇒ U(y) = {s : y ∈ Ns} is ∆1

1[x ] ⇐⇒ {y} is Σ1
1[x ]}

Def y ≤HYP x ⇐⇒ y ∈ ∆1
1[x ] (y ∈ Y, x ∈ X )

• Hyperarithmetical reducibility, much studied when Y = X = N
• We will prove {(x , y) : y ≤HYP x} is Π1

1 , a structure property of Π1
1

? Constructively defined pointclasses have a good structure theory
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? The prewellordering property

Def A (regular) norm on a pointset P ⊆ X is any mapping

σ : P →→ λσ ∈ Ords;

and it is a Γ-norm if the relations

x ≤∗σ y ⇐⇒ x ∈ P & ¬[y ∈ P & σ(y) < σ(x)],

x <∗
σ y ⇐⇒ x ∈ P & ¬[y ∈ P & σ(y) ≤ σ(x)]

are both in Γ

Def A pointclass Γ is normed if every P ∈ Γ admits a Γ-norm

• This specific definition of a Γ-norm was not formulated until the
early 60’s, but many ordinal-valued “index functions” on Π1

1 and
Σ1

2 pointsets had been studied in the classical theory (especially by
Novikov). This definition has the following very useful property:

? y /∈ P =⇒
(
x ≤∗σ y ⇐⇒ x <∗

σ y ⇐⇒ x ∈ P
)
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? The prewellordering property for Π1
1

Theorem (PWO(Π1
1)) Π1

1 is normed

Proof for X = N , then use the Refined Surjection Theorem.
If P ∈ Π1

1(N ), then there is a recursive R ⊆ N2 such that

P(α) ⇐⇒ (∀β)(∃t)R(α(t), β(t))

⇐⇒ the tree T (α) on N is well founded

where T (α) = {(β(0), . . . , β(i − 1)) : (∀t < i)¬R(α(t), β(t))}

Set σ(α) = the rank of T (α) (α ∈ P) and use properties of ranks

Theorem (Norm-Boundedness for Π1
1) For any Π1

1-norm σ : P →→ λσ

on a pointset P ⊆ X ,

P ∈ ∆1
1 ⇐⇒ λσ < ℵ1

• A useful tool for proving that specific pointsets are not Borel,
e.g., WO = {α ∈ N : {(s, t) : α(〈s, t〉) = 1} is a wellordering}
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Uniformization

P

P∗

ª

ª

Px

x
Def Suppose P, P∗ ⊆ X × Y; P∗ uniformizes P if

P∗ ⊆ P & (∀x)[(∃y)P(x , y) =⇒ (∃!y)P∗(x , y)]

Theorem (Novikov, Kondo 1938, Addison) Every P ⊆ (X × Y) in
Π1

1 is uniformized by some P∗ in Π1
1 Deep, central result

? 1938: Kondo’s Theorem and Gödel’s construction of L

(s) The Kreisel Uniformization Theorem Every P ⊆ (X × N) in
Π1

1 is uniformized by some P∗ in Π1
1 Easy but useful

Proof. Let σ : P → Ordinals be a Π1
1-norm and put

P∗(x , t) ⇐⇒ (∀s)[(x , t) ≤∗σ (x , s) & [(x , t) <∗
σ (x , s) ∨ t ≤ s]]
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“Soft”, axiomatic proofs of structure theorems

• Results marked with (s) are proved using only the following
properties of Π1

1:

(a) Π1
1 contains Σ0

1 and is closed under recursive substitutions,
&,∨, ∃N,∀N and ∀Y , for every Y

(b) Π1
1 is parametrized

(c) Π1
1 is normed

and so suitable versions of them hold for a large variety of
pointclasses, including the inductive pointsets,
the pointsets which are Kleene-semirecursive in ∃N
and (under determinacy hypotheses) every Π1

2k+1

• These “soft” proofs were discovered by work in Kleene’s theory
of recursion in higher types, the theory of inductive definability and
the derivation of consequences of projective determinacy (Spector,
Gandy, Kreisel, ynm, Martin, Louveau, Kechris, Harrington, Steel, . . . )
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The Coding Theorem for {y ∈ Y : y ∈ ∆1
1[x ]}

(s) Theorem (after Kleene) For any X ,Y, there is a partial
function d : N×X ⇀ Y such that

(1) y ∈ ∆1
1[x ] ⇐⇒ y ≤HYP x ⇐⇒ (∃i)[d(i , x)↓ & d(i , x) = y ]

(2) The following pointsets are Π1
1:

{(i , x) : d(i , x)↓},
{(i , x , y) : d(i , x)↓ & d(i , x) = y},

{(i , x , y) : d(i , x)↓ & d(i , x) 6= y}
Proof outline for Y = N , then use the Refined Extension Theorem.

Let ϕi : N ⇀ N be the Turing computable partial function with
code i , fix a parametrization G of Π1

1(X × N× N) and put

P(i , x , s, t) ⇐⇒ ϕi is total & (∀s)(∃t)G (ϕi , (x , s, t))

Fix P∗ ⊆ P so that (∃t)P(i , x , s, t) =⇒ (∃!t)P∗(i , x , s, t) and set

d(i , x) = α ⇐⇒ (∀s)P∗(i , x , s, α(s))
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The Effective Perfect Set Theorem, concluded

(s) Theorem (after Kleene) For any X ,Y, there is a partial
function d : N×X ⇀ Y such that

(1) y ∈ ∆1
1[x ] ⇐⇒ y ≤HYP x ⇐⇒ (∃i)[d(i , x)↓ & d(i , x) = y ]

(2) The following pointsets are Π1
1:

{(i , x) : d(i , x)↓},
{(i , x , y) : d(i , x)↓ & d(i , x) = y},

{(i , x , y) : d(i , x)↓ & d(i , x) 6= y}

⇒ {(x , y) : y ≤HYP x} is Π1
1

This completes the proof of the

Effective Perfect Set Theorem For A ∈ Σ1
1[x ](Y),

A has a non-empty perfect subset

⇐⇒ A has a member which is not ∆1
1[x ]
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Restricted Quantification and Spector-Gandy theorems

(s) Theorem (after Kleene) If Q ∈ Π1
1(X × Y) and

P(x) ⇐⇒ (∃y ≤HYP x)Q(x , y),

then P is also Π1
1

Proof. P(x) ⇐⇒ (∃i)
(
d(i , x)↓ & (∀y)[d(i , x) 6= y ∨ Q(x , y)]

)

Theorem (Spector-Gandy) Every P ∈ Π1
1(N) satisfies an equivalence

P(i) ⇐⇒ (∃α ∈ HYP)Q(i , α)

with some Q ∈ Π0
1(N×N ); more generally, if P ∈ Π1

1(X ), then

P(x) ⇐⇒ (∃α ≤HYP x)Q(x , α)

with some Q ∈ Π0
1(X ×N )

• There are several proofs of the Spector-Gandy Theorem, none of
them simple—it is certainly one of the jewels of the effective theory
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? ∆1
1 functions and Lusin’s characterization of B

Def (∆1
1 functions) A (total) function f : X → Y is effectively

Borel measurable or ∆1
1 if its graph {(x , y) : f (x) = y} is ∆1

1

(s) Theorem If A ⊆ X is ∆1
1, f : X → Y is ∆1

1 and f is injective
on A, then f [A] is ∆1

1

Proof. y ∈ f [A] ⇐⇒ (∃x)[x ∈ A & f (x) = y ] (so f [A] is Σ1
1)

⇐⇒ (∃!x)[x ∈ A & f (x) = y ] ⇐⇒ (∃x ≤HYP y)[x ∈ A & f (x) = y ]

and so f [A] is also Π1
1, by the Restricted Quantification Theorem

Theorem (Effective version) A set B ⊆ X is ∆1
1 if and only if

B = f [A] for some Π0
1 set A ⊆ N and a recursive f : N → X

which is injective on A

Theorem (Classical version, Lusin 1917) A set B ⊆ X is Borel if
and only if B = f [A] for some closed A ⊆ N and a continuous
f : N → X which is injective on A
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∆1
1 isomorphisms

Theorem (Classical) Every uncountable Polish space is Borel
isomorphic with the Baire space N
Theorem (Effective) Every perfect recursive Polish space is ∆1

1

isomorphic with N
Theorem Every uncountable recursive Polish space X is ∆1

1[p(X )]
isomorphic with N , where p(X ) is the characteristic function of

PX (s) ⇐⇒ N(X , s) is uncountable

computed relative to a compatible pair (d , r) of X
• PX is Σ1

1 but not (in general) ∆1
1

Theorem (Gregoriades) There exist uncountable recursive Polish
spaces which are not ∆1

1 isomorphic with N
• Gregoriades has initiated a deep study of the reducibility relation

X ≤HYP Y ⇐⇒ there exists a ∆1
1 embedding of X into Y
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? The ∆-Uniformization Criterion

P

P∗

ª

ª

Px

x

(s) Theorem For every P ∈ ∆1
1[ε](X × Y), the following are equivalent:

(1) Some P∗ ∈ ∆1
1[ε](X × Y) uniformizes P

(2) For every x ∈ X , (∃y)P(x , y) =⇒ (∃y ≤HYP (ε, x))P(x , y)

Moreover, if (1) or (2) holds, then proj(P) = {x : (∃y)P(x , y)} is ∆1
1[ε]

Proof. (1) =⇒ (2): If P∗(x , y), then {y} ∈ ∆1
1[ε, x ], so y ∈ ∆1

1[ε, x ]

(2) =⇒ (1): Set Q(x , i) ⇐⇒ [d(i , x)↓ & P(x ,d(i , x))], use
Kreisel Uniformization to get Q∗ and use d again to get P∗ from Q∗

The second claim follows by the Restricted Quantification Theorem
? Characteristic result of EDST Is there a classical version of it?
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Borel sets with countable sections

P

P∗

ª

ª

Px

x

Theorem (classical, Lusin 1930) If every section Px of a Borel set
P ⊆ X × Y is countable, then proj(P) is Borel and P can be
uniformized by a Borel set set P∗

(s) Theorem (effective) If every section Px of a ∆1
1[ε] set P ⊆ X × Y

is countable, then proj(P) is ∆1
1[ε] and P can be uniformized by a

∆1
1[ε] set P∗

Proof. Every Px is ∆1
1[ε, x ], so if it is countable it is contained in

{y : y ∈ ∆1
1[ε, x ]} by the Effective Perfect Set Theorem; and so

the ∆-Uniformization Criterion applies
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Monotone inductive definitions

Def An operator Φ : P(X ) → P(X ) on the powerset of a set X is

monotone if S ⊆ T =⇒ Φ(S) ⊆ Φ(T ) (S , T ⊆ X )

⇒ Every monotone Φ : P(X ) → P(X ) has a least fixed point Φ
characterized by

Φ(Φ) = Φ, (∀S ⊆ X )[Φ(S) ⊆ S =⇒ Φ ⊆ S ]

⇒ Φ =
⋂{S ⊆ X : Φ(S) ⊆ S} =

⋃
ξ Φξ,

where by ordinal recursion, Φξ = Φ(
⋃

η<ξ Φη)

• For example, the set K of Borel codes is the least fixed point Φ
b

of

Φb(S) = {α : α(0) = 0 ∨ [α(0) 6= 0 & (∀i)[(α)i ∈ S ]]} (S ⊆ N )

• The next result often gives the best explicit characterization of Φ
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? The Normed Induction Theorem

Def A monotone operator Φ : P(X ) → P(X ) is Γ on Γ if

Q ∈ Γ(X × Y) =⇒ {(x , y) : x ∈ Φ({x ′ : Q(x ′, y)} ∈ Γ

(s) Theorem If Φ : P(X ) → P(X ) is Π1
1 on Π1

1, then Φ is Π1
1

⇒ K is Π1
1 (which, however, has an elementary proof)

Theorem (ynm, 1974) Let Γ be a pointclass and X a space. If

(1) Γ is parametrized,
(2) some parametrization G of Γ(X ) admits a Γ-norm, and
(3) Φ : P(X ) → P(X ) is Γ on Γ,

then the least fixed point Φ ⊆ X is in Γ

• The hypotheses hold for Σ0
k+1, Π

1
1 and any X , and for Σ0

1 and Nn,N n

• Debs 2008 uses this result (and many other things) to obtain
some interesting applications to Rosenthal compacta which do not
(as yet) have classical proofs
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Proof of the Normed Induction Theorem
Theorem Let Γ be a pointclass and X a space. If

(1) Γ is parametrized,
(2) some parametrization G of Γ(X ) admits a Γ-norm, and
(3) Φ : P(X ) → P(X ) is Γ on Γ,

then the least fixed point Φ ⊆ X is in Γ

Proof. Let σ : G →→ λσ be a Γ-norm on the G ∈ Γ(N ×X ) given
by (2) and by the 2nd RT choose a recursive ε̃ so that

G (ε̃, x) ⇐⇒ x ∈ Φ({x ′ : (ε̃, x ′) <∗
σ (ε̃, x)})

Using the monotonicity of Φ, prove that

(a) G (ε̃, x) =⇒ x ∈ Φ, by induction on σ(ε̃, x), and

(b) x ∈ Φξ =⇒ G (ε̃, x), by induction on ξ

For (b), assume the ind. hyp, x ∈ Φ and ¬G (ε̃, x); note that
(ε̃, x ′) <∗

σ (ε̃, x) ⇐⇒ G (ε̃, x ′), and Φ<ξ ⊆ Geε by the ind. hyp., so
x ∈ Φξ =⇒ x ∈ Φ(Φ<ξ) =⇒ x ∈ Φ(Geε) =⇒ G (ε̃, x)
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Asymmetric open games

• For any X and A ⊆ X<ω × N<ω, consider the two-player game

I x0 x1 x2 · · ·
G (X , A)

II t0 t1 t2 · · ·
where I plays in X , II plays in N and

II wins if for some n, (~x ,~t) = ((x0, . . . , xn−1), (t0, . . . , tn−1)) ∈ A

• G (X , A) is determined by the Gale-Stewart Theorem

Def W (~x ,~t) ⇐⇒ (x0, t0, . . . , xn−1, tn−1) is a winning position for II

(s) Theorem If A is Π1
1 (Π1

1), then

(1) W is Π1
1 (Π1

1) and
(2) if II wins the game, then she has a ∆1

1 (∆1
1) winning strategy

σ : X<ω → N
• With X = N, the effective version is well known

• I don’t know a classical proof for the classical version with X = N
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? More on Γ on Γ

Def A relation Φ ⊆ X ×P(Z) is Γ on Γ if for every Q ∈ Γ(Y ×Z)
the pointset

P(x , y) ⇐⇒ Φ(x , {z : Q(y , z)})
is in Γ

Def Similarly, without a parameter, Φ ⊆ P(Z) is Γ on Γ if for
every Q ∈ Γ(Y × Z), the pointset

P(y) ⇐⇒ Φ({z : Q(y , z)})

is in Γ
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Monotonicity of Γ on Γ relations

Theorem If Γ is parametrized and closed under & and ∨, then
every Φ ⊆ X × P(Z) which is Γ on Γ is monotone on Γ, i.e.,

(
A, B ∈ Γ(Z) & Φ(x , A) & A ⊆ B

)
=⇒ Φ(x ,B)

Proof. Suppose x , A, B satisfy the hypotheses, fix a parametrization
G of Γ(X × Z) and choose a recursive ε̃ by the 2nd RT such that

G (ε̃, x , z) ⇐⇒ z ∈ A ∨
(
Φ(x , {z : G (ε̃, x , z)}) & z ∈ B

)

Now Φ(x , {z : G (ε̃, x , z)}) ; because if not, then {z : G (ε̃, x , z)}) = A
and the hypothesis gives Φ(x , {z : G (ε̃, x , z)}). So

G (ε̃, x , z) ⇐⇒ z ∈ A ∨ z ∈ B ⇐⇒ z ∈ B

and the boxed claim yields the required Φ(x , B)
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Π1
1-reflection

(s) Theorem If Φ ⊆ P(Z) is Π1
1 on Π1

1, then for every A,

A ∈ Π1
1(Z) & Φ(A) =⇒ (∃B ⊆ A)[B ∈ ∆1

1(Z) & Φ(B)]

Proof. Fix a Π1
1-norm σ on a parametrization G of Π1

1(Z ×N ), fix
recursive εA, εΦ such that for all z , α with constants rN0 ∈ N , rZ0 ∈ Z,

G (εA, z , α) ⇐⇒ z ∈ A, G (εΦ, z , α) ⇐⇒ Φ({z ′ : G (α, z ′, rN0 )})
and choose a recursive ε̃ by the 2nd RT such that

G (ε̃, z , α) ⇐⇒ (εA, z , rN0 ) <∗
σ (εΦ, rZ0 , ε̃)

Now G (εΦ, rZ0 , ε̃) ; because if not, then

{z ′ : G (ε̃, z ′, rN0 )} = {z ′ : G (εA, z ′, rN0 )} = A

and so G (εΦ, rZ0 , ε̃). Hence Φ({z : G (ε̃, z , rN0 )}, and we can take

B = {z : G (ε̃, z , rN0 )} = {z : (εA, z , rN0 ) <∗
σ (εΦ, rZ0 , ε̃)}
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Kreisel Compactness
(s) Theorem Suppose {Bi}i∈N is an indexed family of subsets of
X and I ⊆ N so that

(1) the pointset {(i , x) : x ∈ Bi} is Σ1
1, and

(2) I is Π1
1

Then

(∗) (∀J ∈ ∆1
1(N), J ⊆ I )[

⋂
i∈J Bi 6= ∅] =⇒ ⋂

i∈I Bi 6= ∅

Proof. The contrapositive of (∗) is

⋂
i∈I Bi = ∅ =⇒ (∃J ⊆ I )[J ∈ ∆1

1(N) &
⋂

i∈J Bi = ∅]

and it is an instance of Π1
1 reflection on

Φ(A) ⇐⇒ ⋂
i∈A Bi = ∅ (A ⊆ N)

which is Π1
1 on Π1

1
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The ∆1
1(X ) Coding Theorem

(s) Theorem (after Kleene) For every space X , there is a partial
function D : N⇀ P(X ) such that

(1) B ∈ ∆1
1(X ) ⇐⇒ (∃i)[D(i)↓ & B = D(i)]

(2) {i ∈ N : D(i)↓} is Π1
1 and so are the pointsets

{(i , x) : D(i)↓ & x ∈ D(i)}, {(i , x) : D(i)↓ & x /∈ D(i)}
Proof. Let π : N →→X be a recursive surjection
let σ : G → Ords be a Π1

1-norm on a parametrization G of Π1
1(X ),

for any B ∈ ∆1
1(X ) choose a recursive εB such that B = GεB

,

and then by the 2nd RT choose a recursive ε̃ such that

¬G (ε̃, x) ⇐⇒ (∃y)[y ∈ B & ¬(εB , y) ≤∗σ (ε̃, x)]

Now G (ε̃, π(ε̃)) ; because if not, then y ∈ B ⇐⇒ (εB , y) ≤∗ (ε̃, π(ε̃)),
and hence ¬G (ε̃, π(ε̃)) ⇐⇒ (∃y)[y ∈ B & y /∈ B]. So
B = {x : (εB , x) ≤∗σ (ε̃, π(ε̃))}. This codes every ∆1

1(X ) set B by
the pair (εB , ε̃) of two recursive Baire points, which suffices
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Call-by-name (intensional) and call-by-value (extensional)

(s) The Myhill-Shepherdson Theorem A relation Φ ⊆ P(N) is Σ0
1

on Σ0
1 if and only if for some R ∈ Σ0

1(N) and every A ∈ Σ0
1(N),

(∗) Φ(A) ⇐⇒ (∃u, n)[{(u)i : i < n} ⊆ A & R(u, n)]

(s) Theorem A relation Φ ⊆ P(X ) is Π1
1 on Π1

1 if and only if for
some R ∈ Π1

1(N) and every A ∈ Π1
1(X ),

(∗∗) Φ(A) ⇐⇒ (∃i)[D(i)↓ & D(i) ⊆ A & R(i)]

• Γ on Γ definitions are call-by-name (intensional)
—they use a Γ-definition of A to decide Φ(A)

• (∗) and (∗∗) are call-by-value (extensional) characterizations
—they only use membership in A (and Π1

1 pointsets) to decide Φ(A)

? In viewing Π1
1 definability as a generalized recursion theory on

recursive Polish spaces, the correct analogies are

Π1
1 ∼ Σ0

1 and ∆1
1 ∼ finite (not ∆1

1 ∼ recursive)

Yiannis N. Moschovakis: EDST Lec 3, Structure theory 22/22


