Effective Descriptive Set Theory

 what it is about
Lecture 3, Structure theory for pointclasses

Yiannis N. Moschovakis
UCLA and University of Athens www.math.ucla.edu/~ynm

Winter school in Hejnice, Czech Republic, 30 January - 6 February, 2016

Outline

Lecture 1. Recursion in Polish spaces
Lecture 2. Effective Borel, analytic and co-analytic pointsets
Lecture 3. Structure theory for pointclasses

* Constructively defined sets and functions have good properties e.g., every uncountable $\boldsymbol{\Sigma}_{1}^{1}$ pointset has a non-empty perfect subset
- We have reduced this to showing that

$$
\begin{aligned}
& \qquad\left\{y \in \mathcal{Y}: y \in \Delta_{1}^{1}[x]\right\} \text { is } \Pi_{1}^{1}[x], \text { where } \\
& \left.y \in \Delta_{1}^{1}[x] \Longleftrightarrow \mathcal{U}(y)=\left\{s: y \in N_{s}\right\} \text { is } \Delta_{1}^{1}[x] \Longleftrightarrow\{y\} \text { is } \Sigma_{1}^{1}[x]\right\} \\
& \text { Def } y \leq{ }^{\mathrm{HYP}} x \Longleftrightarrow y \in \Delta_{1}^{1}[x] \quad(y \in \mathcal{Y}, x \in \mathcal{X})
\end{aligned}
$$

- Hyperarithmetical reducibility, much studied when $\mathcal{Y}=\mathcal{X}=\mathcal{N}$
- We will prove $\left\{(x, y): y \leq^{H Y P} x\right\}$ is Π_{1}^{1}, a structure property of Π_{1}^{1}
* Constructively defined pointclasses have a good structure theory

\star The prewellordering property

Def A (regular) norm on a pointset $P \subseteq \mathcal{X}$ is any mapping

$$
\sigma: P \rightarrow \lambda_{\sigma} \in \mathrm{Ords} ;
$$

and it is a Γ-norm if the relations

$$
\begin{aligned}
& x \leq_{\sigma}^{*} y \Longleftrightarrow x \in P \& \neg[y \in P \& \sigma(y)<\sigma(x)] \\
& x<_{\sigma}^{*} y \Longleftrightarrow x \in P \& \neg[y \in P \& \sigma(y) \leq \sigma(x)]
\end{aligned}
$$

are both in Γ
Def A pointclass Γ is normed if every $P \in \Gamma$ admits a Γ-norm

- This specific definition of a Γ-norm was not formulated until the early 60's, but many ordinal-valued "index functions" on $\boldsymbol{\Pi}_{1}^{1}$ and $\boldsymbol{\Sigma}_{2}^{1}$ pointsets had been studied in the classical theory (especially by Novikov). This definition has the following very useful property:
$\star \quad y \notin P \Longrightarrow\left(x \leq_{\sigma}^{*} y \Longleftrightarrow x<_{\sigma}^{*} y \Longleftrightarrow x \in P\right)$

\star The prewellordering property for Π_{1}^{1}

Theorem ($\left.\mathrm{PWO}\left(\Pi_{1}^{1}\right)\right) \Pi_{1}^{1}$ is normed
Proof for $\mathcal{X}=\mathcal{N}$, then use the Refined Surjection Theorem. If $P \in \Pi_{1}^{1}(\mathcal{N})$, then there is a recursive $R \subseteq \mathbb{N}^{2}$ such that

$$
\begin{aligned}
P(\alpha) \Longleftrightarrow & (\forall \beta)(\exists t) R(\bar{\alpha}(t), \bar{\beta}(t)) \\
& \Longleftrightarrow \text { the tree } T(\alpha) \text { on } \mathbb{N} \text { is well founded }
\end{aligned}
$$

where $T(\alpha)=\{(\beta(0), \ldots, \beta(i-1)):(\forall t<i) \neg R(\bar{\alpha}(t), \bar{\beta}(t))\}$
Set $\sigma(\alpha)=$ the rank of $T(\alpha) \quad(\alpha \in P)$ and use properties of ranks
Theorem (Norm-Boundedness for Π_{1}^{1}) For any Π_{1}^{1}-norm $\sigma: P \rightarrow \lambda_{\sigma}$ on a pointset $P \subseteq \mathcal{X}$,

$$
P \in \boldsymbol{\Delta}_{1}^{1} \Longleftrightarrow \lambda_{\sigma}<\aleph_{1}
$$

- A useful tool for proving that specific pointsets are not Borel, e.g., $\mathrm{WO}=\{\alpha \in \mathcal{N}:\{(s, t): \alpha(\langle s, t\rangle)=1\}$ is a wellordering $\}$

Uniformization

Def Suppose $P, P^{*} \subseteq \mathcal{X} \times \mathcal{Y}$; P^{*} uniformizes P if

$$
P^{*} \subseteq P \&(\forall x)\left[(\exists y) P(x, y) \Longrightarrow(\exists!y) P^{*}(x, y)\right]
$$

Theorem (Novikov, Kondo 1938, Addison) Every $P \subseteq(\mathcal{X} \times \mathcal{Y})$ in Π_{1}^{1} is uniformized by some P^{*} in Π_{1}^{1} Deep, central result

* 1938: Kondo's Theorem and Gödel's construction of L
(s) The Kreisel Uniformization Theorem Every $P \subseteq(\mathcal{X} \times \mathbb{N})$ in Π_{1}^{1} is uniformized by some P^{*} in Π_{1}^{1} Easy but useful
Proof. Let $\sigma: P \rightarrow$ Ordinals be a Π_{1}^{1}-norm and put

$$
P^{*}(x, t) \Longleftrightarrow(\forall s)\left[(x, t) \leq_{\sigma}^{*}(x, s) \&\left[(x, t)<_{\sigma}^{*}(x, s) \vee t \leq s\right]\right]
$$

"Soft", axiomatic proofs of structure theorems

- Results marked with (s) are proved using only the following properties of Π_{1}^{1} :
(a) Π_{1}^{1} contains Σ_{1}^{0} and is closed under recursive substitutions, $\&, \vee, \exists^{\mathbb{N}}, \forall^{\mathbb{N}}$ and $\forall^{\mathcal{Y}}$, for every \mathcal{Y}
(b) Π_{1}^{1} is parametrized
(c) Π_{1}^{1} is normed
and so suitable versions of them hold for a large variety of pointclasses, including the inductive pointsets, the pointsets which are Kleene-semirecursive in $\exists^{\mathcal{N}}$ and (under determinacy hypotheses) every $\Pi_{2 k+1}^{1}$
- These "soft" proofs were discovered by work in Kleene's theory of recursion in higher types, the theory of inductive definability and the derivation of consequences of projective determinacy (Spector, Gandy, Kreisel, ynm, Martin, Louveau, Kechris, Harrington, Steel, ...)

The Coding Theorem for $\left\{y \in \mathcal{Y}: y \in \Delta_{1}^{1}[x]\right\}$

(s) Theorem (after Kleene) For any \mathcal{X}, \mathcal{Y}, there is a partial function $\mathbf{d}: \mathbb{N} \times \mathcal{X} \rightharpoonup \mathcal{Y}$ such that
(1) $y \in \Delta_{1}^{1}[x] \Longleftrightarrow y \leq{ }^{H Y P} x \Longleftrightarrow(\exists i)[\mathbf{d}(i, x) \downarrow \quad \& \mathbf{d}(i, x)=y]$
(2) The following pointsets are Π_{1}^{1} :

$$
\begin{aligned}
& \{(i, x): \mathbf{d}(i, x) \downarrow\}, \\
& \qquad\{(i, x, y): \mathbf{d}(i, x) \downarrow \& \mathbf{d}(i, x)=y\} \\
& \\
& \{(i, x, y): \mathbf{d}(i, x) \downarrow \& \mathbf{d}(i, x) \neq y\}
\end{aligned}
$$

Proof outline for $\mathcal{Y}=\mathcal{N}$, then use the Refined Extension Theorem.
Let $\varphi_{i}: \mathbb{N} \rightharpoonup \mathbb{N}$ be the Turing computable partial function with code i, fix a parametrization G of $\Pi_{1}^{1}(\mathcal{X} \times \mathbb{N} \times \mathbb{N})$ and put

$$
P(i, x, s, t) \Longleftrightarrow \varphi_{i} \text { is total \& }(\forall s)(\exists t) G\left(\varphi_{i},(x, s, t)\right)
$$

Fix $P^{*} \subseteq P$ so that $(\exists t) P(i, x, s, t) \Longrightarrow(\exists!t) P^{*}(i, x, s, t)$ and set

$$
\mathbf{d}(i, x)=\alpha \Longleftrightarrow(\forall s) P^{*}(i, x, s, \alpha(s))
$$

The Effective Perfect Set Theorem, concluded

(s) Theorem (after Kleene) For any \mathcal{X}, \mathcal{Y}, there is a partial function $\mathbf{d}: \mathbb{N} \times \mathcal{X} \rightharpoonup \mathcal{Y}$ such that
(1) $y \in \Delta_{1}^{1}[x] \Longleftrightarrow y \leq^{\mathrm{HYP}} x \Longleftrightarrow(\exists i)[\mathbf{d}(i, x) \downarrow \quad \& \mathbf{d}(i, x)=y]$
(2) The following pointsets are Π_{1}^{1} :

$$
\begin{aligned}
& \{(i, x): \mathbf{d}(i, x) \downarrow\}, \\
& \qquad\{(i, x, y): \mathbf{d}(i, x) \downarrow \quad \& \mathbf{d}(i, x)=y\} \\
& \\
& \quad\{(i, x, y): \mathbf{d}(i, x) \downarrow \quad \& \mathbf{d}(i, x) \neq y\}
\end{aligned}
$$

$\Rightarrow\left\{(x, y): y \leq^{\mathrm{HYP}} x\right\}$ is Π_{1}^{1}
This completes the proof of the
Effective Perfect Set Theorem For $A \in \Sigma_{1}^{1}[x](\mathcal{Y})$,
A has a non-empty perfect subset
$\Longleftrightarrow A$ has a member which is not $\Delta_{1}^{1}[x]$

Restricted Quantification and Spector-Gandy theorems

(s) Theorem (after Kleene) If $Q \in \Pi_{1}^{1}(\mathcal{X} \times \mathcal{Y})$ and

$$
P(x) \Longleftrightarrow\left(\exists y \leq^{\mathrm{HYP}} x\right) Q(x, y)
$$

then P is also Π_{1}^{1}
Proof. $P(x) \Longleftrightarrow(\exists i)(\mathbf{d}(i, x) \downarrow \&(\forall y)[\mathbf{d}(i, x) \neq y \vee Q(x, y)])$
Theorem (Spector-Gandy) Every $P \in \Pi_{1}^{1}(\mathbb{N})$ satisfies an equivalence

$$
P(i) \Longleftrightarrow(\exists \alpha \in \mathrm{HYP}) Q(i, \alpha)
$$

with some $Q \in \Pi_{1}^{0}(\mathbb{N} \times \mathcal{N})$; more generally, if $P \in \Pi_{1}^{1}(\mathcal{X})$, then

$$
P(x) \Longleftrightarrow\left(\exists \alpha \leq^{\mathrm{HYP}} x\right) Q(x, \alpha)
$$

with some $Q \in \Pi_{1}^{0}(\mathcal{X} \times \mathcal{N})$

- There are several proofs of the Spector-Gandy Theorem, none of them simple-it is certainly one of the jewels of the effective theory

$\star \Delta_{1}^{1}$ functions and Lusin's characterization of \mathbf{B}

Def (Δ_{1}^{1} functions) A (total) function $f: \mathcal{X} \rightarrow \mathcal{Y}$ is effectively Borel measurable or Δ_{1}^{1} if its graph $\{(x, y): f(x)=y\}$ is Δ_{1}^{1}
(s) Theorem If $A \subseteq \mathcal{X}$ is $\Delta_{1}^{1}, f: \mathcal{X} \rightarrow \mathcal{Y}$ is Δ_{1}^{1} and f is injective on A, then $f[A]$ is Δ_{1}^{1}
Proof. $y \in f[A] \Longleftrightarrow(\exists x)[x \in A \& f(x)=y] \quad$ (so $f[A]$ is Σ_{1}^{1})
$\Longleftrightarrow(\exists!x)[x \in A \& f(x)=y] \Longleftrightarrow\left(\exists x \leq{ }^{\text {HYP }} y\right)[x \in A \& f(x)=y]$
and so $f[A]$ is also Π_{1}^{1}, by the Restricted Quantification Theorem
Theorem (Effective version) A set $B \subseteq \mathcal{X}$ is Δ_{1}^{1} if and only if $B=f[A]$ for some Π_{1}^{0} set $A \subseteq \mathcal{N}$ and a recursive $f: \mathcal{N} \rightarrow \mathcal{X}$ which is injective on A
Theorem (Classical version, Lusin 1917) A set $B \subseteq \mathcal{X}$ is Borel if and only if $B=f[A]$ for some closed $A \subseteq \mathcal{N}$ and a continuous $f: \mathcal{N} \rightarrow \mathcal{X}$ which is injective on A

Δ_{1}^{1} isomorphisms

Theorem (Classical) Every uncountable Polish space is Borel isomorphic with the Baire space \mathcal{N}
Theorem (Effective) Every perfect recursive Polish space is Δ_{1}^{1} isomorphic with \mathcal{N}
Theorem Every uncountable recursive Polish space \mathcal{X} is $\Delta_{1}^{1}[\mathbf{p}(\mathcal{X})]$ isomorphic with \mathcal{N}, where $\mathbf{p}(\mathcal{X})$ is the characteristic function of

$$
P_{\mathcal{X}}(s) \Longleftrightarrow N(\mathcal{X}, s) \text { is uncountable }
$$

computed relative to a compatible pair (d, \mathbf{r}) of \mathcal{X}

- $P_{\mathcal{X}}$ is Σ_{1}^{1} but not (in general) Δ_{1}^{1}

Theorem (Gregoriades) There exist uncountable recursive Polish spaces which are not Δ_{1}^{1} isomorphic with \mathcal{N}

- Gregoriades has initiated a deep study of the reducibility relation $\mathcal{X} \leq^{\text {HYP }} \mathcal{Y} \Longleftrightarrow$ there exists a Δ_{1}^{1} embedding of \mathcal{X} into \mathcal{Y}

* The Δ-Uniformization Criterion

(s) Theorem For every $P \in \Delta_{1}^{1}[\varepsilon](\mathcal{X} \times \mathcal{Y})$, the following are equivalent
(1) Some $P^{*} \in \Delta_{1}^{1}[\varepsilon](\mathcal{X} \times \mathcal{Y})$ uniformizes P
(2) For every $x \in \mathcal{X},(\exists y) P(x, y) \Longrightarrow\left(\exists y \leq{ }^{\operatorname{HYP}}(\varepsilon, x)\right) P(x, y)$

Moreover, if (1) or (2) holds, then $\operatorname{proj}(P)=\{x:(\exists y) P(x, y)\}$ is $\Delta_{1}^{1}[\varepsilon]$ Proof. (1) \Longrightarrow (2): If $P^{*}(x, y)$, then $\{y\} \in \Delta_{1}^{1}[\varepsilon, x]$, so $y \in \Delta_{1}^{1}[\varepsilon, x]$
$(2) \Longrightarrow(1)$: Set $Q(x, i) \Longleftrightarrow[\mathbf{d}(i, x) \downarrow \& P(x, \mathbf{d}(i, x))]$, use Kreisel Uniformization to get Q^{*} and use \mathbf{d} again to get P^{*} from Q^{*}

The second claim follows by the Restricted Quantification Theorem * Characteristic result of EDST Is there a classical version of it?

Borel sets with countable sections

Theorem (classical, Lusin 1930) If every section P_{x} of a Borel set $P \subseteq \mathcal{X} \times \mathcal{Y}$ is countable, then $\operatorname{proj}(P)$ is Borel and P can be uniformized by a Borel set set P^{*}
(s) Theorem (effective) If every section P_{x} of a $\Delta_{1}^{1}[\varepsilon]$ set $P \subseteq \mathcal{X} \times \mathcal{Y}$ is countable, then $\operatorname{proj}(P)$ is $\Delta_{1}^{1}[\varepsilon]$ and P can be uniformized by a $\Delta_{1}^{1}[\varepsilon]$ set P^{*}

Proof. Every P_{x} is $\Delta_{1}^{1}[\varepsilon, x]$, so if it is countable it is contained in $\left\{y: y \in \Delta_{1}^{1}[\varepsilon, x]\right\}$ by the Effective Perfect Set Theorem; and so the Δ-Uniformization Criterion applies

Monotone inductive definitions

Def An operator $\Phi: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ on the powerset of a set X is monotone if $S \subseteq T \Longrightarrow \Phi(S) \subseteq \Phi(T) \quad(S, T \subseteq X)$
\Rightarrow Every monotone $\Phi: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ has a least fixed point $\bar{\Phi}$ characterized by

$$
\begin{aligned}
& \qquad \Phi(\bar{\Phi})=\bar{\Phi}, \quad(\forall S \subseteq X)[\Phi(S) \subseteq S \Longrightarrow \bar{\Phi} \subseteq S] \\
& \Rightarrow \bar{\Phi}=\cap\{S \subseteq X: \Phi(S) \subseteq S\}=\bigcup_{\xi} \bar{\Phi}_{\xi}, \\
& \text { where by ordinal recursion, } \bar{\Phi}_{\xi}=\Phi\left(\bigcup_{\eta<\xi} \bar{\Phi}_{\eta}\right)
\end{aligned}
$$

- For example, the set K of Borel codes is the least fixed point $\bar{\Phi}^{b}$ of

$$
\Phi^{b}(S)=\left\{\alpha: \alpha(0)=0 \vee\left[\alpha(0) \neq 0 \&(\forall i)\left[(\alpha)_{i} \in S\right]\right]\right\} \quad(S \subseteq \mathcal{N})
$$

- The next result often gives the best explicit characterization of $\bar{\Phi}$

* The Normed Induction Theorem

Def A monotone operator $\Phi: \mathcal{P}(\mathcal{X}) \rightarrow \mathcal{P}(\mathcal{X})$ is Γ on 「 if

$$
Q \in \Gamma(\mathcal{X} \times \mathcal{Y}) \Longrightarrow\left\{(x, y): x \in \Phi\left(\left\{x^{\prime}: Q\left(x^{\prime}, y\right)\right\} \in \Gamma\right.\right.
$$

(s) Theorem If $\Phi: \mathcal{P}(\mathcal{X}) \rightarrow \mathcal{P}(\mathcal{X})$ is Π_{1}^{1} on Π_{1}^{1}, then Φ is Π_{1}^{1}
$\Rightarrow \mathrm{K}$ is Π_{1}^{1} (which, however, has an elementary proof)
Theorem (ynm, 1974) Let Γ be a pointclass and \mathcal{X} a space. If
(1) Γ is parametrized,
(2) some parametrization G of $\Gamma(\mathcal{X})$ admits a Γ-norm, and
(3) $\Phi: \mathcal{P}(\mathcal{X}) \rightarrow \mathcal{P}(\mathcal{X})$ is Γ on Γ,
then the least fixed point $\bar{\Phi} \subseteq \mathcal{X}$ is in Γ

- The hypotheses hold for $\Sigma_{k+1}^{0}, \Pi_{1}^{1}$ and any \mathcal{X}, and for Σ_{1}^{0} and $\mathbb{N}^{n}, \mathcal{N}^{n}$
- Debs 2008 uses this result (and many other things) to obtain some interesting applications to Rosenthal compacta which do not (as yet) have classical proofs

Proof of the Normed Induction Theorem

Theorem Let Γ be a pointclass and \mathcal{X} a space. If
(1) Γ is parametrized,
(2) some parametrization G of $\Gamma(\mathcal{X})$ admits a Γ-norm, and
(3) $\Phi: \mathcal{P}(\mathcal{X}) \rightarrow \mathcal{P}(\mathcal{X})$ is Γ on Γ,
then the least fixed point $\bar{\Phi} \subseteq \mathcal{X}$ is in Γ
Proof. Let $\sigma: G \rightarrow \lambda_{\sigma}$ be a Γ-norm on the $G \in \Gamma(\mathcal{N} \times \mathcal{X})$ given by (2) and by the 2nd RT choose a recursive $\widetilde{\varepsilon}$ so that

$$
G(\widetilde{\varepsilon}, x) \Longleftrightarrow x \in \Phi\left(\left\{x^{\prime}:\left(\widetilde{\varepsilon}, x^{\prime}\right)<_{\sigma}^{*}(\widetilde{\varepsilon}, x)\right\}\right)
$$

Using the monotonicity of Φ, prove that
(a) $G(\widetilde{\varepsilon}, x) \Longrightarrow x \in \Phi$, by induction on $\sigma(\widetilde{\varepsilon}, x)$, and
(b) $x \in \bar{\Phi}_{\xi} \Longrightarrow G(\widetilde{\varepsilon}, x)$, by induction on ξ

For (b), assume the ind. hyp, $x \in \Phi$ and $\neg G(\widetilde{\varepsilon}, x)$; note that
$\left(\widetilde{\varepsilon}, x^{\prime}\right)<_{\sigma}^{*}(\widetilde{\varepsilon}, x) \Longleftrightarrow G\left(\widetilde{\varepsilon}, x^{\prime}\right)$, and $\bar{\Phi}_{<\xi} \subseteq G_{\widetilde{\varepsilon}}$ by the ind. hyp., so
$x \in \Phi_{\xi} \Longrightarrow x \in \Phi\left(\Phi_{<\xi}\right) \Longrightarrow x \in \Phi\left(G_{\widetilde{\varepsilon}}\right) \Longrightarrow G(\widetilde{\varepsilon}, x)$

Asymmetric open games

- For any \mathcal{X} and $A \subseteq \mathcal{X}^{<\omega} \times \mathbb{N}^{<\omega}$, consider the two-player game

$$
\begin{array}{l|l|llll}
& 1 & x_{0} & x_{1} & x_{2} & \cdots
\end{array}
$$

$$
G(\mathcal{X}, A)
$$

$$
\text { II } \quad t_{0} \quad t_{1} \quad t_{2} \quad \cdots
$$

where I plays in \mathcal{X}, II plays in \mathbb{N} and

$$
\text { II wins if for some } n,(\vec{x}, \vec{t})=\left(\left(x_{0}, \ldots, x_{n-1}\right),\left(t_{0}, \ldots, t_{n-1}\right)\right) \in A
$$

- $G(\mathcal{X}, A)$ is determined by the Gale-Stewart Theorem

Def $W(\vec{x}, \vec{t}) \Longleftrightarrow\left(x_{0}, t_{0}, \ldots, x_{n-1}, t_{n-1}\right)$ is a winning position for II
(s) Theorem If A is $\Pi_{1}^{1}\left(\Pi_{1}^{1}\right)$, then
(1) W is $\Pi_{1}^{1}\left(\Pi_{1}^{1}\right)$ and
(2) if II wins the game, then she has a $\Delta_{1}^{1}\left(\Delta_{1}^{1}\right)$ winning strategy $\sigma: \mathcal{X}^{<\omega} \rightarrow \mathbb{N}$

- With $\mathcal{X}=\mathbb{N}$, the effective version is well known
- I don't know a classical proof for the classical version with $\mathcal{X}=\mathcal{N}$

* More on 「 on 「

Def A relation $\Phi \subseteq \mathcal{X} \times \mathcal{P}(\mathcal{Z})$ is Γ on Γ if for every $Q \in \Gamma(\mathcal{Y} \times \mathcal{Z})$ the pointset

$$
P(x, y) \Longleftrightarrow \Phi(x,\{z: Q(y, z)\})
$$

is in Γ
Def Similarly, without a parameter, $\Phi \subseteq \mathcal{P}(\mathcal{Z})$ is Γ on Γ if for every $Q \in \Gamma(\mathcal{Y} \times \mathcal{Z})$, the pointset

$$
P(y) \Longleftrightarrow \Phi(\{z: Q(y, z)\})
$$

is in Γ

Monotonicity of Γ on Γ relations

Theorem If Γ is parametrized and closed under \& and \vee, then every $\Phi \subseteq \mathcal{X} \times \mathcal{P}(\mathcal{Z})$ which is Γ on Γ is monotone on Γ, i.e.,

$$
(A, B \in \Gamma(\mathcal{Z}) \& \Phi(x, A) \& A \subseteq B) \Longrightarrow \Phi(x, B)
$$

Proof. Suppose x, A, B satisfy the hypotheses, fix a parametrization G of $\Gamma(\mathcal{X} \times \mathcal{Z})$ and choose a recursive $\widetilde{\varepsilon}$ by the 2nd RT such that

$$
G(\widetilde{\varepsilon}, x, z) \Longleftrightarrow z \in A \vee(\Phi(x,\{z: G(\widetilde{\varepsilon}, x, z)\}) \& z \in B)
$$

Now $\Phi(x,\{z: G(\widetilde{\varepsilon}, x, z)\})$; because if not, then $\{z: G(\widetilde{\varepsilon}, x, z)\})=A$ and the hypothesis gives $\Phi(x,\{z: G(\widetilde{\varepsilon}, x, z)\})$. So

$$
G(\widetilde{\varepsilon}, x, z) \Longleftrightarrow z \in A \vee z \in B \Longleftrightarrow z \in B
$$

and the boxed claim yields the required $\Phi(x, B)$

Π_{1}^{1}-reflection

(s) Theorem If $\Phi \subseteq \mathcal{P}(\mathcal{Z})$ is Π_{1}^{1} on Π_{1}^{1}, then for every A,

$$
A \in \Pi_{1}^{1}(\mathcal{Z}) \& \Phi(A) \Longrightarrow(\exists B \subseteq A)\left[B \in \Delta_{1}^{1}(\mathcal{Z}) \& \Phi(B)\right]
$$

Proof. Fix a Π_{1}^{1}-norm σ on a parametrization G of $\Pi_{1}^{1}(\mathcal{Z} \times \mathcal{N})$, fix recursive $\varepsilon_{A}, \varepsilon_{\Phi}$ such that for all z, α with constants $r_{0}^{\mathcal{N}} \in \mathcal{N}, r_{0}^{\mathcal{Z}} \in \mathcal{Z}$, $G\left(\varepsilon_{A}, z, \alpha\right) \Longleftrightarrow z \in A, \quad G\left(\varepsilon_{\Phi}, z, \alpha\right) \Longleftrightarrow \Phi\left(\left\{z^{\prime}: G\left(\alpha, z^{\prime}, r_{0}^{\mathcal{N}}\right)\right\}\right)$ and choose a recursive $\widetilde{\varepsilon}$ by the 2nd RT such that

$$
G(\widetilde{\varepsilon}, z, \alpha) \Longleftrightarrow\left(\varepsilon_{A}, z, r_{0}^{\mathcal{N}}\right)<_{\sigma}^{*}\left(\varepsilon_{\Phi}, r_{0}^{\mathcal{Z}}, \widetilde{\varepsilon}\right)
$$

Now $G\left(\varepsilon_{\Phi}, r_{0}^{\mathcal{Z}}, \widetilde{\varepsilon}\right)$; because if not, then

$$
\left\{z^{\prime}: G\left(\widetilde{\varepsilon}, z^{\prime}, r_{0}^{\mathcal{N}}\right)\right\}=\left\{z^{\prime}: G\left(\varepsilon_{A}, z^{\prime}, r_{0}^{\mathcal{N}}\right)\right\}=A
$$

and so $G\left(\varepsilon_{\Phi}, r_{0}^{\mathcal{Z}}, \widetilde{\varepsilon}\right)$. Hence $\Phi\left(\left\{z: G\left(\widetilde{\varepsilon}, z, r_{0}^{\mathcal{N}}\right)\right\}\right.$, and we can take

$$
B=\left\{z: G\left(\widetilde{\varepsilon}, z, r_{0}^{\mathcal{N}}\right)\right\}=\left\{z:\left(\varepsilon_{A}, z, r_{0}^{\mathcal{N}}\right)<_{\sigma}^{*}\left(\varepsilon_{\Phi}, r_{0}^{\mathcal{Z}}, \widetilde{\varepsilon}\right)\right\}
$$

Kreisel Compactness

(s) Theorem Suppose $\left\{B_{i}\right\}_{i \in \mathbb{N}}$ is an indexed family of subsets of \mathcal{X} and $I \subseteq \mathbb{N}$ so that
(1) the pointset $\left\{(i, x): x \in B_{i}\right\}$ is \sum_{1}^{1}, and
(2) $/$ is Π_{1}^{1}

Then
(*) $\quad\left(\forall J \in \Delta_{1}^{1}(\mathbb{N}), J \subseteq I\right)\left[\bigcap_{i \in J} B_{i} \neq \emptyset\right] \Longrightarrow \bigcap_{i \in I} B_{i} \neq \emptyset$
Proof. The contrapositive of $(*)$ is

$$
\bigcap_{i \in I} B_{i}=\emptyset \Longrightarrow(\exists J \subseteq I)\left[J \in \Delta_{1}^{1}(\mathbb{N}) \& \bigcap_{i \in J} B_{i}=\emptyset\right]
$$

and it is an instance of Π_{1}^{1} reflection on

$$
\Phi(A) \Longleftrightarrow \bigcap_{i \in A} B_{i}=\emptyset \quad(A \subseteq \mathbb{N})
$$

which is Π_{1}^{1} on Π_{1}^{1}

The $\Delta_{1}^{1}(\mathcal{X})$ Coding Theorem

(s) Theorem (after Kleene) For every space \mathcal{X}, there is a partial function $\mathbf{D}: \mathbb{N} \rightharpoonup \mathcal{P}(\mathcal{X})$ such that
(1) $B \in \Delta_{1}^{1}(\mathcal{X}) \Longleftrightarrow(\exists i)[\mathbf{D}(i) \downarrow \quad \& B=\mathbf{D}(i)]$
(2) $\{i \in \mathbb{N}: \mathbf{D}(i) \downarrow\}$ is Π_{1}^{1} and so are the pointsets

$$
\{(i, x): \mathbf{D}(i) \downarrow \& x \in \mathbf{D}(i)\}, \quad\{(i, x): \mathbf{D}(i) \downarrow \& x \notin \mathbf{D}(i)\}
$$

Proof. Let $\pi: \mathcal{N} \rightarrow \mathcal{X}$ be a recursive surjection let $\sigma: G \rightarrow$ Ords be a Π_{1}^{1}-norm on a parametrization G of $\Pi_{1}^{1}(\mathcal{X})$, for any $B \in \Delta_{1}^{1}(\mathcal{X})$ choose a recursive ε_{B} such that $B=G_{\varepsilon_{B}}$, and then by the 2nd RT choose a recursive $\widetilde{\varepsilon}$ such that

$$
\neg G(\widetilde{\varepsilon}, x) \Longleftrightarrow(\exists y)\left[y \in B \& \neg\left(\varepsilon_{B}, y\right) \leq_{\sigma}^{*}(\widetilde{\varepsilon}, x)\right]
$$

Now $G(\widetilde{\varepsilon}, \pi(\widetilde{\varepsilon}))$; because if not, then $y \in B \Longleftrightarrow\left(\varepsilon_{B}, y\right) \leq^{*}(\widetilde{\varepsilon}, \pi(\widetilde{\varepsilon}))$, and hence $\neg G(\widetilde{\varepsilon}, \pi(\widetilde{\varepsilon})) \Longleftrightarrow(\exists y)[y \in B \& y \notin B]$. So $B=\left\{x:\left(\varepsilon_{B}, x\right) \leq_{\sigma}^{*}(\widetilde{\varepsilon}, \pi(\widetilde{\varepsilon}))\right\}$. This codes every $\Delta_{1}^{1}(\mathcal{X})$ set B by the pair $\left(\varepsilon_{B}, \widetilde{\varepsilon}\right)$ of two recursive Baire points, which suffices

Call-by-name (intensional) and call-by-value (extensional)
(s) The Myhill-Shepherdson Theorem A relation $\Phi \subseteq \mathcal{P}(\mathbb{N})$ is Σ_{1}^{0} on Σ_{1}^{0} if and only if for some $R \in \Sigma_{1}^{0}(\mathbb{N})$ and every $A \in \Sigma_{1}^{0}(\mathbb{N})$, $(*) \quad \Phi(A) \Longleftrightarrow(\exists u, n)\left[\left\{(u)_{i}: i<n\right\} \subseteq A \& R(u, n)\right]$
(s) Theorem A relation $\Phi \subseteq \mathcal{P}(\mathcal{X})$ is Π_{1}^{1} on Π_{1}^{1} if and only if for some $R \in \Pi_{1}^{1}(\mathbb{N})$ and every $A \in \Pi_{1}^{1}(\mathcal{X})$,
$(* *) \quad \Phi(A) \Longleftrightarrow(\exists i)[\mathbf{D}(i) \downarrow \& \mathbf{D}(i) \subseteq A \& R(i)]$

- 「 on 「 definitions are call-by-name (intensional)
-they use a Γ-definition of A to decide $\Phi(A)$
- $(*)$ and $(* *)$ are call-by-value (extensional) characterizations
-they only use membership in A (and Π_{1}^{1} pointsets) to decide $\Phi(A)$
* In viewing Π_{1}^{1} definability as a generalized recursion theory on recursive Polish spaces, the correct analogies are

$$
\left.\Pi_{1}^{1} \sim \Sigma_{1}^{0} \text { and } \Delta_{1}^{1} \sim \text { finite } \quad \text { (not } \Delta_{1}^{1} \sim \text { recursive }\right)
$$

